Interview zum Contiuous Wet Draping in der Composite World

Kürzlich berichteten Simon Werner und Marco Bogenschütz in einem Interview mit der Composite World von ihrer Forschung zum kontinuierlichen Nassdrapieren (engl. Continuous Wet Draping). Die neuartige Technologie ist derzeit Gegenstand des interdisziplinären Forschungsprojekts AutoBlade, das die Herstellung von Carbon-Rotorblättern für Gezeitenkraftwerke unter Berücksichtigung von spezifischen Material- und Strukturanforderungen in einem automatisierten Prozess vorsieht. Das Projekt wird durch den Europäischen Fond für regionale Entwicklung und das Land Niedersachsen gefördert .  Modular draping system shows potential for wrinkle-free, automated dry fiber layup | CompositesWorld

BionicWalker

Entwicklung einer neuartigen prothetischen Versorgung für teilfuß-
amputierte Patienten mit
Carbonfederelement für die Aufnahme,
Speicherung und Abgabe von Bewegungsenergie

Das Projekt „Bionic Walker“ ist ein durch das Zentrale Innovationsprogramm Mittelstand gefördertes Kooperationsprojekt zur Entwicklung und Erforschung einer neuen prothetischen Versorgung für Patienten mit Teilfußamputationen. Zu dem Projektkonsortium gehören die REHA-OT Lüneburg Melchior & Fittkau GmbH aus Lüneburg, die Zeisberg Carbon GmbH aus Hannover, die OK Gummiwerk Otto Körting GmbH aus Hameln, das Institut für Orthopädische Bewegungsdiagnostik (OrthoGO) aus Hannover sowie die der Forschergruppe HPCFK angehörigen Institute Institut für Flugzeugbau und Leichtbau der TU Braunschweig und Institut für Polymerwerkstoffe und Kunststofftechnik der TU Clausthal. Administrativ wird das Projektkonsortium durch die Wirtschaftsförderungs-GmbH für Stadt und Landkreis Lüneburg unterstützt.

Die Aufgabe der, neuen prothetischen Versorgung besteht in der Wiederherstellung einer normalen, dynamischen und symmetrischen Gangabwicklung für Patienten nach Teilfußamputationen, um Folgebeschwerden durch Gangveränderungen zu vermeiden und ihnen zu ermöglichen, schneller in den gesellschaftlichen und beruflichen Alltag zurückzukehren. Erreicht wird die wesentliche Funktion des Produkts durch ein spezielles Federelement aus carbonfaserverstärktem Kunststoff, das die Charakteristik der nicht mehr vorhandenen anatomischen Strukturen nachbildet. Genau wie bei einem gesunden Bewegungsapparat wird ein Teil der kinetischen Energie beim Auftreten während des Gehens als potenzielle Energie in dem Federelement gespeichert. Beim erneuten Abheben des Fußes dient die komprimierte Feder der Unterstützung des Patienten und verringert den erforderlichen Kraftaufwand.

Ausgehend von einer ganganalytischen Ermittlung der medizinischen Anforderungen findet innerhalb des Kooperationsprojekts die komplette Entwicklung, Fertigung und Zusammenführung aller Komponenten zu einem Demonstrator statt. Dessen Funktionsfähigkeit und Wirkung wird über statische und zyklische Versuche in einer Prüfmaschine, über mehrachsige Versuche mit einem Industrieroboter sowie realitätsnahe Versuche im Ganglabor nachgewiesen.

Laufzeit: 2021 – 2023

Förderer: Bundesministerium für Wirtschaft und Energie im Zentralen Innovationsprogramm Mittelstand (ZIM)

 

AGRILIGHT – BMWi bewilligt 1,8 Mio. Euro für Leichtbauforschung in der Landmaschinentechnik

Leichtbau für starke, tonnenschwere Maschinen: IFW und PuK überführen gemeinsam mit Landmaschinenhersteller Krone und dem Leichtbauexperten M+D Composites Technology GmbH den Feldhäcksler BiG X in ein Leichtbaukonzept. 

In den vergangenen Jahrzehnten ist die Leistungsfähigkeit landwirtschaftlicher Erntemaschinen stark gestiegen. Größere Feldabschnitte werden durch größere und schwerere Maschinen in einem Arbeitsgang bearbeitet. Das gestiegene Gewicht bringt die Hersteller jedoch an die Grenzen der straßenverkehrsrechtlichen Zulässigkeit. Und: Anwender sehen sich mit einer stärkeren Bodenverdichtung auf den Agrarflächen konfrontiert.

In dem vom Bundesministerium für Wirtschaft und Energie (BMWi) mit 1,8 Mio. Euro geförderten Projekt AGRILIGHT sollen Leichtbautechnologien zu einem niedrigeren Gesamtgewicht des BIG X beitragen und so den bestehenden Konflikt auflösen, indem der ein-tonnenschwere Hauptrahmen des Feldhäckslers in ein Leichtbaukonzept überführt wird.

Die Projektpartner wollen in dem jüngst gestarteten Forschungsprojekt zunächst das Strukturkonzept des schweren Hauptrahmens sowie anliegender Funktionseinheiten analysieren und grundlegend in einen faserverbundgerechten, funktionsorientierten Leichtbau-Strukturentwurf aus Glasfaser- und Kohlenstofffaserverbundwerkstoffen neu aufbauen.

Eine besondere Herausforderung ist die Vielzahl an unterschiedlichen Fügestellen, deren beanspruchungsgerechte Überführung in das neue Leichtbaukonzept unter Berücksichtigung der verschiedenen neuen Werkstoffe und deren, zum Teil grundlegend unterschiedlichen, mechanischen, elektrischen und chemischen Materialeigenschaften erfolgen wird. Da bestehende form-, kraft- und stoffschlüssige Fügemethoden beibehalten werden sollen, erhält die Faserverbundstruktur in den Anbindungsbereichen einen hybriden Strukturaufbau. Grundlage dafür stellen die im Rahmen des Schwerpunktprogramms 1712 Intrinsische Hybridverbunde erlangten Erfahrungen mit der Multilayer-Insert-Technologie dar. 

Gleichzeitig verlangen Faserverbunde andere Fertigungsverfahren, bieten damit aber auch neue Formgebungsmöglichkeiten, wie z. B. aus der Luftfahrt bekannt. Es werden von M+D unterschiedliche Bauweisen konzipiert und bewerte, von differentiellen Strukturkonzepten, die mit herkömmlichen Faserverbundhalbzeugen einen sehr flexiblen Aufbau erlauben, bis hin zu hochintegralen Monocoque-Lösungen, bei denen ein fasergerechter Entwurf seine Vorzüge im Hinblick auf den Leichtbau und die maximale Gewichtsreduktion ausspielen kann.

Schlussendlich wird das neue Leichtbau-Rahmenkonzept in einem praxisnahen Validierungsexperiment von Krone in Zusammenarbeit mit allen Partnern untersucht. Hier werden unterschiedliche Belastungsszenarien des realen Einsatzes in einem dafür konzipierten Prüfstand simuliert. Aus den hier gewonnenen Testergebnissen leiten die Projektpartner fundierte Aussagen über eine mögliche Serientauglichkeit des Leichtbaurahmens ab. Gelingt es, den Rahmen mittels neuer Verbundstoffe und neuer Formgebung deutlich leichter zu gestalten, wäre dies ein wegweisender Schritt für die gesamte Landtechnikbranche.

TowPregRod

Kontinuierliches multi-orbitales Legen von TowPregs mit variablen Faserwinkeln

Luftfahrt-Leichtbaustäbe in CFK-Sandwichbauweise werden beim Projektpartner Schütze GmbH & Co in Braunschweig gegenwärtig in einem Strangziehverfahren hergestellt, indem ein zylindrisch geschliffenes Kernmaterial mit harzgetränkten Kohlenstofffasern parallel zur Stablängsachse belegt wird. Die unidirektional verstärkten Sandwichstäbe verfügen über sehr gute gewichtsbezogene mechanische Eigenschaften und dienen beispielsweise als leichte, hochsteife und hochfeste strukturversteifende Bauteile wie z. B. Stützstreben oder Steuerstangen. Der aktuelle Prozess gestattet nur die Erzeugung unidirektional in Stablängsrichtung orientierter Faserschichten; Winkellagen müssen gesondert in einem Offline-Prozess hergestellt werden. Das kontinuierliche Einbringen von Winkellagen im Fertigungsprozess sowie der Einsatz bereits vorimprägnierter Faserrovings erweitern das Einsatzgebiet der Sandwichstäbe signifikant und ermöglichen eine ressourcenschonende, zukunftsweisende Produktion.

Technologisches Ziel des Einzelvorhabens ist die Entwicklung und Erforschung eines multi-orbitalen TowPreg-Legesystems zur Applikation radialer Versteifungslagen mit variablen Faserwinkeln auf bereits axial verstärkten TowPreg-Sandwichstäben. Dabei ermöglichen die um den Kern rotierenden, radial verteilten Legeeinheiten eine vollflächige Endlosfertigung torsionssteifer Stäbe. Bei der Technologieentwicklung steht der spätere Einsatzort in der Kleinserienfertigung im Mittelpunkt. Besonderes Augenmerk in Entwicklung und Systemerforschung wird daher auf eine einfache Bedienbarkeit, kurze Umrüstzeiten, flexible Erweiterbarkeit und eine sichere, robuste Prozessführung gelegt.

Der Forschungsschwerpunkt des IFW liegt in der Erweiterung des Wissens zur Verarbeitung und automatisierten Ablage von TowPregs im Multi-Orbitallegen. Gegenüber den in der Luftfahrt überwiegend eingesetzten vorimprägnierten Tapes (Prepregs) bieten TowPregs einen erheblichen Kostenvorteil, unterliegen durch den Herstellungsprozess jedoch einer höheren Dimensionsvarianz. Dies erhöht die Anforderungen an die Robustheit des Verarbeitungsprozesses und stellt gleichzeitig eine der zentralen Herausforderungen der geplanten entwicklungsbegleitenden Forschungsarbeit dar. Im Speziellen wird die kombinierte Ablage mehrerer radial verteilter TowPregs auf bereits unidirektional verstärkten Sandwichstäben untersucht. Die hierbei wirkenden Kräfte durch Zugspannung im Tow und Oberflächenandruck auf den bereits axial belegten Schaumkern müssen untersucht und daraus resultierende Wechselwirkungen zwischen Prozess und Bauteilqualität analysiert werden.

Das erlangte Wissen zur Verarbeitung von TowPregs kann in allgemeine Konstruktionsrichtlinien für kostengünstige, robuste Ablegesysteme für vorimprägnierte Rovings überführt werden und so das Einsatzspektrum der TowPregs auf weitere, von Nasslaminierverfahren dominierten Kleinserienproduktionen ausdehnen.

Laufzeit: 2021 – 2025

Förderer: Bundesministerium für Wirtschaft und Energie im Luftfahrtforschungsprogramm (LuFo VI)

AgriLight

Entwicklung einer Leichtbau-Rahmenstruktur aus faserverstärkten Kunststoffen und innovativen, hybriden Verbindungsbereichen für den Einsatz in Agrarmaschinen

Das Projekt AgriLight ist ein Kooperationsprojekt der Partner Maschinenfabrik Bernard Krone GmbH & Co. KG, M&D Composites Technologie GmbH, dem Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) und dem Institut für Polymerwerkstoffe und Kunststofftechnik (PuK). Das Projekt wird im Rahmen des Technologietransfer-Programms Leichtbau (TTP LB) vom Bundesministerium für Wirtschaft und Energie gefördert.

Ziel des Vorhabens ist die zentrale, hochbeanspruchte Rahmenstruktur schwerer landwirtschaftlicher Erntemaschinen tiefgreifend weiterzuentwickeln, um das Gewicht der zumeist tonnenschweren Komponente signifikant zu reduzieren. Dies beinhaltet folgende Teilziele:

    • Einsatz moderner Faserkunststoffverbund- und Mischbauweisen zur Gewichtsreduktion hochbeanspruchter Strukturen
    • Reduzierung des Kraftstoffverbrauches und Senkung von Abgasemissionen
    • Verringerte Bodenverdichtung durch die Erntemaschine und Verbesserung der Lebensbedingungen für Bodenorganismen
    • Vereinfachte verkehrsrechtliche Zulassung selbstfahrender Erntemaschinen
    • Reduktion von Montagezeiten und -kosten für den Hersteller der Erntemaschine

Dazu werden die bisherige Stahlkonstruktion und die anliegenden Funktionseinheiten eines Feldhäckslers für die Maisernte, wie z. B. Tanks, analysiert und erstmalig in einem funktionsintegrierenden Leichtbauansatz aus Glasfaser- und Kohlenstofffaserverbundwerkstoffen (GFK / CFK) neu aufgebaut und umfassend getestet. Besondere Herausforderungen entstehen bei dieser Art der Werkstoffsubstitution durch die teilweise grundlegend verschiedenen mechanischen, elektrischen und chemischen Materialeigenschaften. Gleichzeitig verlangen Faserverbunde andere Fertigungsverfahren und bieten neue Formgebungsmöglichkeiten. Zur Ausschöpfung des vollen Leichtbaupotenzials werden diese Eigenschaften bei der Konstruktion berücksichtigt und sinnvoll eingesetzt. Ein weiterer Schwerpunkt liegt bei der Erforschung neuer Ansätze zur lokalen Strukturhybridisierung durch Integration von metallischen Einlegern an den versagenskritischen, hochbelasteten Schnittstellen zu angrenzenden Baugruppen in verschiedenen Stufen des Fertigungsprozesses. Hier werden auf Grundlage von Erkenntnissen der grundlegenden Forschung neue Konzepte erarbeitet, die zum einen die Einleitung hoher Lasten in die Verbundstruktur und zum anderen die Verwendung bekannter Verbindungsmethoden der Metallverarbeitung während der Montage mit den Faserverbundwerkstoffen ermöglichen. Am Ende des Projekts ist die umfangreiche mechanische Prüfung der neuen Rahmenstruktur in speziellen Prüfständen geplant, die den realen Einsatz simulieren und wichtige Hinweise auf die Serientauglichkeit des Bauteils liefert.

Laufzeit: 2021 – 2024

 

Sustainable Marine adopts German Aerospace and Wind Energy Technology to advance Tidal Turbine Blades

Together with our partners from  and  we started the project #EVOFoil optimizing the performance of tidal turbine foils for renewable #TidalEnergy, financed by the National Research Council of Canada (NRC) and the German Federal Ministry for Economic Affairs and Energy (BMWi). Our research is focused on a new material concept to improve the mechanical behavior of the foil to counteract the various loads under seawater conditions. This implicates the adoption of the hybrid technology #Multilayer-Insert to enable the load carrying areas of the foil to be partially reinforced with thin metallic sheets, improving adaption to the turbine drive shaft boosting durability and strength.
See the entire press release at our partners website.

 

AutoBLADE

AutoBLADE – Automatisierte Technologie zur Herstellung von kontinuierlich drapierten Preforms für großflächige FVK-Infusionsbauteile mit hohem Aspektverhältnis

Die Nutzbarmachung der Energie aus Gezeitenströmungen bietet großes Potenzial, den erneuerbaren Anteil im Energiemix der Zukunft zu steigern. Die Herstellung von Rotorblättern für die hierzu notwendigen Gezeitenkraftwerke ist gleichermaßen, wie die Produktion von Windkraftrotorblättern, gekennzeichnet von einem überwiegenden Anteil manueller Handarbeit. Dies betrifft insbesondere den Prozessschritt des Preformings, bei dem ein großflächiger, textiler Vorformling hergestellt wird, der in einem anschließenden Schritt mit der polymeren Matrix vakuuminfundiert wird. Während das Preforming für Bauteile kleiner und mittlerer Größe in der Regel über das Verpressen bebinderter Textillagen erfolgt, existiert kein automatisiertes Pendant für großflächige Bauteile mit einem hohen Längen-zu-Breitenverhältnis (Aspektverhältnis). Gelingt es, das Preforming für derartige FVK-Bauteile zu automatisieren, können sowohl wirtschaftliche als auch qualitätsspezifische Fertigungsoptimierungen für die nachhaltige Energieerzeugung in Aussicht gestellt werden.

Ziel des im Innovationsverbund der LU Hannover, TU Clausthal und TU Braunschweig durchzuführenden Forschungsprojekts ist die Entwicklung und Erforschung einer automatisierten Technologie zur Herstellung von kontinuierlich drapierten Preforms für großflächige FVK-Infusionsbauteile mit hohem Aspektverhältnis. Der neuartige, vollautomatisierte Herstellungsprozess, der anhand eines Technologiedemonstrators in Form eines Rotorblatts für Gezeitenkraftwerke entwickelt wird, umfasst den lagenweisen Aufbau eines Preforms durch kontinuierliches Drapieren online bebinderter textiler Halbzeuge auf komplex gekrümmte Oberflächen.

Mit Hilfe des im Projekt FlexProCFK entwickelten Funktionsdemonstrator eines Drapierlegekopfes für komplexe Strukturbauteile wird eine neue Technologie zum kontinuierlichen Aufbau eines Trockenfaser-Preforms entwickelt und erforscht. Ein Forschungsschwerpunkt ist hierbei die Fixierung des Fasertextils mittels eines aufgesprühten Binders auf der Werkzeugform oder der zuvor abgelegten Textillage, um ein Verrutschen zu vermeiden. Der Legeprozess wird dabei auf das Aktivierungsverhalten verschiedener Bindertypen angepasst und der Einfluss auf die Qualität des Preforms untersucht. Weiterführend wird das Infusionsverhalten des Preforms unter dem Einfluss des Bindermaterials und -menge in Permeabilitätsmessungen untersucht und zur Verwendung in Infusionssimulationen modelliert. Im betrachteten Technologiedemonstrator stellen fertigungsinduzierte Faserwinkelabweichungen und Faltenbildung im Preform eine der häufigsten Versagensursachen dar. Durch die stereoskopische Aufnahme der Faserstruktur nach der Ablage werden die Faserwinkel und Drapierfehler im Preform erfasst und dienen einer realitätsnahen Infusionssimulation und Strukturanalyse zur Eigenschaftscharakterisierung des Rotorblattes als Grundlage. Es wird simulativ der Einfluss lokaler Faserwinkelabweichungen auf mechanische Bauteileigenschaften wie Festigkeit und Stabilität in Abhängigkeit von Bauteilgeometrieparametern und Materialeigenschaften untersucht. Durch den kontinuierlichen Austausch im Innovationsverbund werden die Erkenntnisse aus den experimentellen und simulativen Untersuchungen effizient verknüpft und in die Prozessentwicklung zur Steigerung der Preformqualität einbezogen.

Förderer: EUROPÄISCHEN FONDS FÜR REGIONALE ENTWICKLUNG (EFRE)

Informations- und Kommunikationspflichten | NBank

Laufzeit: 2021-2022

EvoFoil

Entwicklung der nächsten Generation von Rotorblättern für Gezeitenströmungsturbinen

Das Projekt EvoFoil erfolgt als Kooperationsprojekt der Partner Sustainable Marine Energy Canada Ltd, M&D Composites Technologie GmbH und dem Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) der Leibniz Universität Hannover (LUH). Es handelt sich um ein internationales Forschungs- und Entwicklungskooperationsprojekt, das auf kanadischer Seite durch die Nationale Forschungseinrichtung Kanada (National Research Council of Canada – NRC) innerhalb des Industrie- und Forschungsunterstützungsprogramms (Industrial Research Assistance Program – IRAP) gefördert wird. Auf deutscher Seite erfolgt die Förderung durch das Bundesministerium für Wirtschaft und Energie (BMWi) in Form des Zentralen Innovationsprogramms Mittelstand (ZIM). Ziel des Forschungsvorhabens ist es, eine neue Generation von robusten und wirtschaftlichen Rotorblättern für Gezeitenströmungsturbinen zu entwickeln, die aufgrund ihres Einsatzes innerhalb der rauen Meerwasserumgebung in der Bay of Fundy vor der Küste Nova Scotia’s in Kanada erheblichen Betriebs- und Umgebungslasten, wie Korrosion und Abrasion ausgesetzt sind.

Das IFW entwickelt und erforscht innerhalb des Projekts eine belastungsgerechte Anbindung der Rotorblätter an die Turbinennabe. Grundlage bildet dabei das im DFG geförderten Schwerpunktprogramm SPP 1712 erforschte Lasteinleitungsprinzip des „Multilayer-Inserts“, bei dem Einzellagen faserverstärkter Laminate durch metallische Einleger substituiert werden, um die lokalen Eigenschaften des Laminats in Bezug auf eine Lasteinleitung zu verbessern. Dazu erforscht das IFW zunächst die das Verhalten von hybriden Bauweisen in Laminatrandbereichen und während des Betriebs in korrosiven und abrasiven Medien. Durch die großflächige Fügung entstehen zu erforschende Fragestellungen in der Grenzschicht zwischen Metall und FKV, die unter dem Einfluss von thermischen und mechanischen Lasten untersucht werden. Ziel ist es, eine geeignete Oberflächenbehandlung zu identifizieren, die eine ausreichende Steifigkeit und Festigkeit der verwendeten Laminate im Verbund erzeugt. Die gewonnenen Erkenntnisse der anwendungsorientierten Erforschung der Multilayer-Insert Bauweise münden in einem neuen Rotorblattdesign, das unter Zuhilfenahme numerischer Methoden in einer optimierte Blattwurzelstruktur in Mischbauweise überführt wird. Zum Schutz des Blattes werden außerdem Beschichtungssysteme entwickelt und innerhalb des Projekts durch Labor- und Feldtests auf ihre Eignung untersucht. Eine Erweiterung der Blätter um Winglets geht außerdem mit einer Wirkungsgradsteigerung einher, die die Wettbewerbsfähigkeit der neuen Blattgeneration trotz der gesteigerten Komplexität sicherstellt. In Zusammenarbeit der Partner entsteht so ein Rotorblattdesign, das den rauen Bedingungen der Offshore-Energieerzeugung gewachsen ist und ihnen bei reduziertem Wartungsaufwand standhält.

Förderer: Nationalen Forschungseinrichtung Kanada (National Research Council of Canada – NRC) und seinem Industrie- und Forschungsunterstützungsprogramm (Industrial Research Assistenz Programm – IRAP) und Bundesministerium für Wirtschaft und Energie (BMWi), Zentrales Innovationsprogramm Mittelstand (ZIM) 

Laufzeit: 2021 – 2023

   Dieses Bild hat ein leeres Alt-Attribut. Der Dateiname ist NRC.jpeg