CFK-Metall-Hybrid Krafteinleitungselement für hochbelastete Faserverbundstrukturen
Ziel des Forschungsvorhabens ist es, eine intrinsische Hybridschnittstelle und ihren Fertigungsprozess zu entwickeln und zu erforschen, deren belastungsoptimierter lagenweiser Aufbau eine gleichmäßige Krafteinleitung am Übergang von metallischen Strukturen in hochbelastete, komplexe Faserkunststoffverbundstrukturen erlaubt. Hierzu wird ein intrinsisch hergestellter mehrlagiger Einleger (Multilayer-Insert MLI) entwickelt, der eine neuartige Schnittstelle für diese partielle Strukturanbindung bildet. Die hier betrachteten FKV-Strukturen können zukünftig beispielsweise im Flugzeugbau oder auch im Automobilbau eingesetzt werden.
Im intrinsischen Hybridisierungsprozess werden mehrere aufeinander folgende metallische Einzellagen im generierenden Lagenaufbau des Automated Fiber Placement-Prozesses (AFP) sukzessive in einem automatisierten Ablegeprozess zu einem MLI aufbaut. Die Orientierung der Einzellagen, deren Form und auch deren Materialeigenschaften sind jeweils an die Anforderungen der Schnittstelle optimiert. Die Integration des MLI vermeidet eine Aufdickung des Laminats.Das Anschauungsbeispiel zeigt die Idee des neuen MLI (b) im Vergleich zu einem konventionellen Insert (a). Das MLI baut auf einer Grundplatte z. B. mit einem zentrierenden Stehbolzen auf. Mit fortschreitendem Ablageprozess werden weitere Einzellagen des MLI zentriert auf den darunter befindlichen Lagen aufgesetzt. Ihre Form orientiert sich an der Faserausrichtung in den benachbarten FKV-Lagen. Um den Einschränkungen des AFP-Prozesses beispielsweise durch einen zentrierenden Bolzen Rechnung zu tragen, befinden sich in seiner Umgebung Materialzusätze, die den Bereich ausfüllen, der vom Legekopf nicht mehr erreicht werden kann. Sie sind hier so gestaltet, dass die Tows um sie herum abgelegt werden (c) oder bis zu einem zusätzlichen Prepreg-Patch an den Bolzen herangelegt werden können (d).
Zur Erreichung des Entwicklungsziels erfolgt eine enge Zusammenarbeit zwischen der Simulation und Auslegung, der Werkstoffwissenschaft und der Produktionstechnik. Es wird der Prozess der Hybridisierung innerhalb der Herstellung von FKV-Strukturen mittels AFP-Technologien und einem neu konzipierten Endeffektor zur prozessintegrierten Ablage der metallischen Einzellagen des MLI entwickelt und untersucht. Zur Steigerung der Prozesssicherheit bei der Herstellung von komplexen Strukturen wird ein simulationsgestützter Überwachung- und Regelungsansatz erarbeitet und in das System implementiert. Es werden speziell für die besonderen Anforderungen der Lasteinleitung senkrecht zur Ebene des Laminates Materialien für die Einzellagen des MLI bestimmt und qualifiziert sowie das Grenzschichtverhalten der Materialkombination im FKV ermittelt. Für die Auslegung der MLI als Hybridisierungselement werden Modelle des Materialverhaltens im Prozess und in der Anwendung entwickelt. Mit Berücksichtigung dieser Modelle werden Berechnungsmodelle zur lastoptimalen Auslegung und Gestaltung von MLI-Einzellagen und zur Ermittlung des Einflusses von MLI auf das Tragverhalten hybridisierter Hochleistungs-Laminate bestimmt. Einhergehend mit der Validierung der in den Untersuchungsschwerpunkten entwickelten Methoden und Prototypensysteme erfolgt eine Technologiepotentialanalyse für zukünftige neue Anwendungsbereiche.
Förderer: Deutsche Forschungsgemeinschaft (DFG)
Laufzeit: 2014-2017, 2017 – 2020