Multi-Matrix-Prepreg

Online-Herstellung von Multi-Matrix-Prepreg im Automated-Fiber-Placement

3.MMPDas Projekt verfolgt die Etablierung des interdisziplinären Forschungsschwerpunkts „individualisierte CFK-Leichtbaustrukturen durch flexible Fertigungstechnologien“. Insgesamt setzt die Forschergruppe dabei sowohl auf Grundlagenforschungsvorhaben als auch Forschungsvorhaben mit industrieller Beteiligung und industrieller Forschungsdienstleistung. Das Vorhaben ist hierbei der erste Baustein der Standortstrategie und thematisiert den Bereich „Materialseitige Variantenflexibilität“.

Individualisierte Strukturen aus Faser-Kunststoff-Verbunden (FKV), insbesondere als kohlenstofffaserverstärkte Kunststoffe (CFK), stellen in der Serienfertigung, z. B. von Flugzeugen (Rumpf, Flügel, Seitenleitwerk), eine große wirtschaftliche und fertigungstechnische Herausforderung dar. Zur Sicherung der zukünftigen Wett­be­werbs­fähigkeit der niedersächsischen CFK-Industrie bedarf es der Umsetzung neuer, flexibler Werkstoff-, Bauweisen- und Fertigungskonzepte. Dadurch können Herstellkosten reduziert, in steigendem Umfang weitere funktionsintegrierte Bauteilevarianten aus CFK produziert und Fertigungsstandorte, die zurzeit CFK-Bauteile wie den Rumpf des Airbus A350XWB fertigen, im Hinblick auf zukünftige Entwicklungen technologisch gestärkt werden. Materialseitige Lösungen sind dabei ein Bestandteil der Maßnahmen um das Potenzial von CFK weiter auszuschöpfen. Die Projektidee und gleichzeitig die Herausforderung des Vorhabens bestehen darin, dass durch die Wahl der Matrixwerkstoffe (Duroplast, Thermoplast, Elastomer) und deren Anteile innerhalb eines online imprägnierten und automatisiert abgelegten Faserhalbzeugs (Prepreg), Eigenschaften wie Impact-Resistenz, Rissfortschrittswiderstand, Schweißbarkeit, Steifigkeiten und Festigkeiten maßgeblich beeinflusst werden können.

Ziel des Verbundprojektes ist, Methoden zur automatisierten und qualitätsüberwachten Herstellung von Multi-Matrix-Laminaten mit durchgängiger Faser zu entwickeln, zu realisieren und zu verifizieren, sowie die sich ergebenden Einsatzpotenziale aufzuzeigen. Ausgehend von bestehenden Material- und Fertigungskonzepten wird ein innovativer interdisziplinärer Ansatz entwickelt, um MMLs mit durchgängigen Faser­strängen und bereichsweise gezielt eingesetzter thermoplastischer, elastomerer und duroplastischer Matrix zu realisieren. Dabei werden die Rovings entsprechend der sich aus den Bauteilanforderungen ergebenen Eigenschaften des lokal vorhandenen Matrixmaterials, unter Berücksichtigung der werkstoffbedingten Prozess­parameter, mit Hilfe eines neuartigen AFP-Moduls online imprägniert und konsolidiert sowie im Werkzeug abgelegt.

Förderer: Niedersächsisches Vorab, Volkswagenstiftung

Therm-O-Plan

Automatisierte Bahnplanung und Überwachung von Automated-Fiber-Placement-Prozessen

Das Automated Fiber Placement (AFP) ist eine der führenden Fertigungstechnologien im Bereich der kosteneffektiven, hochqualitativen Serienproduktion von Leichtbaustrukturen. Dennoch bieten sowohl die Zuverlässigkeit der automatisierten Fertigungssysteme als auch die Effizienz der Prozessplanung noch unzureichend genutzte Verbesserungspotenziale. Neben der Luft- und Raumfahrtindustrie treiben vor allem Automobil- und andere anspruchsvolle Leichtbauindustrien die weiterführenden Entwicklungen voran.

Beim AFP-Prozess werden vorimprägnierte Kohlestofffasern (Tows) auf einer Werkzeugoberfläche automatisiert abgelegt. Durch die fertigungstechnologischen Fortschritte in jüngster Vergangenheit sind zunehmend komplexere Bauteile realisierbar. Dieser Fortschritt bedingt allerdings auch eine höhere Komplexität der Werkzeuge und Werkzeugoberflächen. Ungeachtet verfügbarer CAD/CAM-Applikationen erfordern die zusätzlichen hohen Strukturanforderungen an CFK-Laminate eine manuelle, sehr zeitaufwändige Anpassung der Ablegepfade unter Einhaltung strenger Auslegungsregeln. Neben den optimal gewählten Tow-Bahnen nehmen insbesondere die Prozessparameter entscheidenden Einfluss auf die Legequalität. Unzureichend vorgeheizte Werkzeugoberflächen oder ein abweichender Kompaktierungsdruck können zu Defekten, wie beispielsweise sich von der Oberfläche ablösende Tows, führen. Sofern die auftretenden Fehler nicht detektiert und korrigiert werden, kommt es zu Abweichungen von Design- und den Strukturanforderungen des Bauteils. In der Regel ist der Maschinenführer für die Qualitätssicherung zuständig, die in Form einer zeitaufwändigen Sichtprüfung der einzelnen Lagen erfolgt. Dieses Vorgehen schränkt nicht nur die Produktivität des AFP-Prozesses ein, sondern verursacht zusätzlich hohe Reparaturkosten für nicht entdeckte Fehler, die zu einem späteren Zeitpunkt korrigiert werden müssen oder in Ausnahmenfällen sogar zum Ausschuss des gesamten Bauteils führen können.

Das Projekt „Therm-O-Plan“ ist eine Kooperation des Instituts für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover, der Automation Technology GmbH und der SWMS Systemtechnik Ingenieurgesellschaft mbH. Ziel des Projektes ist ein reduzierter Planungsaufwand für die Herstellung von Leichtbaustrukturen durch eine automatisierte optimierte Bahnplanung. Darüber hinaus zielt das Vorhaben darauf ab, die Prozesssicherheit des AFP Prozesses durch eine onlinefähige thermografische Prozessüberwachung zu steigern. Die dabei verfolgten Teilentwicklungen werden in einem übergeordneten Lösungsansatz integriert und können in konventionelle AFP-Prozessketten leicht implementiert werden.

Förderer: Zentrales Innovationsprogramm Mittelstand (ZIM)

Laufzeit: 2015-2017

HP CFK

Hochleistungsproduktion von CFK-Strukturen

Als hochschulübergreifender Forschungsverbund haben wir uns zum Ziel gesetzt, eine durchgängige Lösung für eine wirtschaftliche und prozesssichere Fertigung von kohlenstoffverstärkten Kunststoffbauteilen (CFK) der Luftfahrttechnik zu erarbeiten. Hierbei verfolgen wir Fertigungseigenschaften, die den Ansprüchen einer großseriennahen Teileproduktion dieser Industrie gerecht werden.

Entlang der geschlossenen Prozesskette setzen wir in unseren Kompetenzfeldern folgende Teilziele:

Im Bereich der Bauweisen und Strukturen werden, basierend auf und in Interaktion mit Werkstoffen und Prozessfolgen, effizientere Leichtbaukonzepte entwickelt. Hierbei konzentrieren wir uns auf robust und prozesssicher zu Fertigende Geometrien bei Berücksichtigung der strukturmechanischen Wirksamkeit dieser Teile. Die Optimierung der Bauweise bezieht sich sowohl auf globale, lokale und toleranzbesetzte Parameter.

Für Werkstoffe, Prozesse sowie Prozessketten der CFK-Bauteilherstellung gilt es, den Herausforderungen an zukünftige Strukturen im Hinblick auf hohe Prozessgeschwindigkeiten bei gesteigerter Robustheit und effektiver Leistungsausbeute der Systemkomponenten zu begegnen. Wir entwickeln daher neue Lösungsansätze für die Werkstoffsysteme Textilien und Harze im Hinblick auf einen serientauglichen Prozess.

Zur Zielerreichung einer Hochleistungsproduktion von CFK-Strukturen ist zudem eine weitreichende Anlagen- und Prozessautomatisierung voraussetzend. Wir betrachten Drapiersysteme und Werkzeugsysteme mit einer hohen Formflexibilität, die sowohl Lösungsansätze zur Bewältigung  von Toleranzproblemen innerhalb der Fertigung liefern, als auch eine hohe Flexibilität in der Formgestaltung erlauben. Prozessintegrierte Qualitätssicherungsmechanismen stützen zudem den hohen Automatisierungsgrad.

Um eine ökonomische CFK-Fertigung zu garantieren, soll neben den fundamentalen Untersuchungen der o.g. Teilziele das gesamte Projekt von einer Wirtschaftlichkeitsanalyse unter Berücksichtigung von Wechselwirkungen innerhalb der Prozesskette begleitet werden.

Neben diesen wissenschaftlichen Teilzielen wird mit dem Vorhaben eine didaktische Zielsetzung verfolgt. Diese ermöglicht es dem wissenschaftlichen Nachwuchs, innerhalb des institutionalisierten Vorhabenverbundes ihre Dissertation strukturiert und zielgerichtet anzufertigen. Hierzu zählt die Integration arbeitsmarktrelevanter Kompetenzen in die Doktorandenausbildung, wie fachlich-methodische und sozial-kommunikative Fertigkeiten, die eine praxisnahe Beschäftigungsfähigkeit der wissenschaftlichen Mitarbeiter/innen steigern. Anwendungsnahe Praktika sowie industrielle Forschungskooperationen helfen dem wissenschaftlichen Nachwuchs zudem, sich mit der regionalen Wirtschaft zu vernetzen und so die Sichtbarkeit der beteiligten Universitäten zu stärken.

Förderer: Niedersächsisches Ministerium für Wissenschaft und Kultur, Europäischen Fonds für regionale Entwicklung

Laufzeit: 2010-2015

https://hpcfk.de/wp-content/uploads/2017/02/Hinweissch5097b96ac3e6d.jpg